Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta

Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta - Assalamualaikum Kawan memiau, Pada Artikel yang anda baca kali ini dengan judul Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta, kami telah mempersiapkan artikel ini dengan baik untuk anda baca dan ambil informasi didalamnya. mudah-mudahan isi postingan Artikel Materi, yang kami tulis ini dapat anda pahami. baiklah, selamat membaca.

Judul : Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta
link : Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta

Baca juga


Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta

Masih suasana lebaran dan tentunya masih libur kerja :) jadi masih bisa menyempatkan posting blog... (Kalau udah masuk kerja siap-siap blog ini gak update lagi hehe )
Pada kesempatan kali ini saya akan membahas tentang Rumus/Formula Brahmagupta... entah kenapa dan gak tau dapat bisikan dari mana tiba-tiba aja dapat ide untuk  mengulas materi ini.... :)



Bro/sist masih ingat dengan Rumus Heron? yups, rumus Heron merupakan rumus menentukan luas segitiga jika diketahui ketiga sisinya, rumusnya kurang lebih seperti ini: $L=\sqrt{s(s-a)(s-b)(s-c)}$ dengan $a, b, c$ ketiga sisi segitiga dan $s=\frac{a+b+c}{2}$. lho kenapa jadi bahas Rumus Heron? apa hubungannya dengan Rumus Brahmagupta?? Sabar... sabar... masih pembukaan :) 

Jika Bro dan Sist gak asing dengan Rumus Heron, maka Bro dan Sist pasti bisa cepat paham dan hapal rumus Brahmagupta, karena rumus Brahmagupta merupakan pengembangan/perluasan dari rumus Heron. Rumus Brahmagupta merupakan rumus untuk mencari luas segi empat tali busur jika diketahui keempat sisinya. Untuk lebih jelas simak baik-baik penjelasan berikut ini

RUMUS/FORMULA BRAHMAGUPTA
Misal diberikan segiempat tali busur $ABCD$ dengan sisi-sisi $a, b, c, d$ seperti pada gambar berikut ini:

Luas segi empat tali busur $ABCD$  dapat di tentukan sebagai berikut:
$$\boxed{L_{ABCD}=\sqrt{(s-a)(s-b)(s-c)(s-d)}}$$
dengan $s=\frac{a+b+c+d}{2}$

PEMBUKTIAN RUMUS/FORMULA BRAHMAGUPTA
Misal kita tarik garis $AC$ seperti pada gambar berikut ini:
Maka kita peroleh dua buah segitiga yaitu segitiga $ABC$ dan segitiga $ACD$ dengan luas:
$$L_{ABC}=\frac{1}{2}\times cd\times \sin B$$
$$L_{ACD}=\frac{1}{2}\times ab\times \sin D$$

Perhatikan bahwa:
$\begin{align*}B+D&=180^\circ\\D&=180^\circ-B\end{align*}$

maka:
$\begin{align*}\sin D&=\sin (180^\circ-B)\\&=\sin B\end{align*}$

Dengan demikian luas segirmpat tali busur $ABCD$ adalah:
$\begin{align*}L_{ABCD}&=L_{ABC}+L_{ACD}\\&=\frac{1}{2}\times cd\times \sin B+\frac{1}{2}\times ab\times \sin D\\&=\frac{1}{2}\times cd\times \sin B+\frac{1}{2}\times ab\times \sin B\\&=\frac{\sin B\times(ab+cd)}{2}\end{align*}$

Jika kedua ruas kita kali $2$ maka kita peroleh:
$\begin{align*}2L_{ABCD}&=\sin B\times(ab+cd)\\4(L_{ABCD})^{2}&=\sin^{2}{B}\times(ab+cd)^{2}\end{align*}$

substitusikan $\sin^{2}{B}=1-\cos^2{B}$, maka diperoleh:
$\begin{align*}4(L_{ABCD})^{2}&=(1-\cos^{2}{B})\times(ab+cd)^{2}\\4(L_{ABCD})^{2}&=(ab+cd)^{2}-\cos^{2}{B}\times(ab+cd)^{2}\end{align*}$

Sekarang perhatikan sisi $AC$  pada gambar, berdasarkan aturan cosinus diperoleh:
$$|AC|=a^{2}+b^{2}-2ab\cos D$$
$$|AC|=c^{2}+d^{2}-2cd\cos B$$
maka:
$$a^{2}+b^{2}-2ab\cos D=c^{2}+d^{2}-2cd\cos B$$
dengan $\cos B=-\cos D$,  maka kita peroleh

$\begin{align*}a^{2}+b^{2}+2ab\cos B&=c^{2}+d^{2}-2cd\cos B\\2ab\cos B+2cd\cos B&=c^{2}+d^{2}-a^{2}-b^{2}\\2\cos B(ab+cd)&=c^{2}+d^{2}-a^{2}-b^{2}\\4\cos^{2}{B}(ab+cd)^{2}&=(c^{2}+d^{2}-a^{2}-b^{2})^{2}\\ \cos^{2}{B}(ab+cd)^{2}&=\frac{1}{4}(c^{2}+d^{2}-a^{2}-b^{2})^{2}\end{align*}$

Sekarang kita substitusi $\small\cos^{2}{B}(ab+cd)^{2}=\frac{1}{4}(c^{2}+d^{2}-a^{2}-b^{2})^{2}$
ke $\small4(L_{ABCD})^{2}=(ab+cd)^{2}-\cos^{2}{B}(ab+cd)^{2}$ 
maka kita peroleh:

$\small\begin{align*}4(L_{ABCD})^{2}&=(ab+cd)^{2}-\cos^{2}{B}(ab+cd)^{2}\\4(L_{ABCD})^{2}&=(ab+cd)^{2}-\frac{1}{4}(c^{2}+d^{2}-a^{2}-b^{2})^{2}\\16(L_{ABCD})^{2}&=4(ab+cd)^{2}-(c^{2}+d^{2}-a^{2}-b^{2})^{2}\\16(L_{ABCD})^{2}&=(2(ab+cd)+(c^{2}+d^{2}-a^{2}-b^{2})) (2(ab+cd)-(c^{2}+d^{2}-a^{2}-b^{2}))\\16(L_{ABCD})^{2}&=(c^{2}+d^{2}+2cd-a^{2}-b^{2}+2ab)(a^{2}+b^{2}+2ab-c^{2}-d^{2}+2cd)\\16(L_{ABCD})^{2}&=((c+d)^{2}-(a-b)^{2})((a+b)^{2}-(c-d)^{2})\\16(L_{ABCD})^{2}&=(c+d+b-a)(c+d+a-b)(a+b+c-d)(a+b+d-c)\end{align*}$

selanjutnya, kita substitusikan $a+b+c+d=2s$, maka kita peroleh:
$\small\begin{align*}16(L_{ABCD})^{2}&=(2s-2a)(2s-2b)(2s-2c)(2s-2d)\\16(L_{ABCD})^{2}&=16(s-a)(s-b)(s-c)(s-d)\\(L_{ABCD})^{2}&=(s-a)(s-b)(s-c)(s-d)\\L_{ABCD}&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\qquad\blacksquare\end{align*}$


Jika panjang sisi $d=0$ maka akan kita peroleh Formula Heron.





Demikianlah Artikel Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta

Sekianlah artikel Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sampai jumpa di postingan artikel lainnya.

Anda sekarang membaca artikel Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta dengan alamat link https://memiau-kuy.blogspot.com/2017/06/menentukan-luas-segiempat-tali-busur.html

0 Response to "Menentukan Luas Segiempat Tali Busur dengan Formula Brahmagupta"

Posting Komentar